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In this paper we shall provide a method to approximate distances between
two points on earth given by latitude and longitude. The motivation behind
this approximation is the efficient mass-calculation of distances between a
reference point and other nearby points in a huge database, while saving the
expenses of trigonometric calculations for each point in the database. The
approximation is done by approximating the squared distance with a 2nd
order Taylor-polynomial. Finally we will present a method to calculate lati-
tude and longitude boundaries for a given center point and radius, in order
to allow quick lookup of entries using a 2-dimensional database index.

We model the earth using a reference ellipsoid as defined by the formulas

below, where a is the semi-major and b is the semi-minor axis of a reference
ellipsoid (e.g. WGS-84) in meter.

X = N, cos ¢ cos A
Y = N, cos¢ sin A
Z = Ny(1l—¢)sing
N




The distance d of two points (XY, Z) and (Xy, Y, Zp) in 3-dimensional
space is given by:

= (X = Xo)* + (Y = Y0)* + (Z — Z)*
= (Ng cos ¢ cos A — Ny, cos ¢y cos \g)”
+ (N cos ¢ sin A — Ny, cos ¢p sin \g)?
+ (N (1 — €%) sing — Ny, (1 — €?) sin ¢)*

Note that the path on the surface of the ellipsoid is distinct from d. For
our approximation of d? with a 2nd order Taylor-polynomial this discrepancy
has no negative impact, as it does not affect any of its coefficients (not proven
here). The Taylor-polynomial d? is given by:

(38¢Z(¢)6>\Jd2) |¢ $0,A=Xo

(& = 0)' (A = Xo)’

Using a computer algrabra software, we can calcuate t;; and get the fol-
lowing results:

too =10
t1o =20
tgo = a2 (1 — 62)2 3
(1 — €2sin? gbo)
tor =20
t17 =20
tor =0
5 1— sin? ¢y
foz = @ 1 — e2sin? ¢y
by = —? (1 — €2) sin ¢y cos;bo
(1 — €2 sin? gbo)
by — —a (1—¢€?) (1 — sin? gbo) (% + €% sin? gbo)

(1 — €2sin? (bo)g



With too = th = t01 = tll = t21 = 0 we can re-write d~2 as:

a2 = tao( — ¢0)® + (taz( — ¢0)® + tia(d — do) + toa) (A — Ao)”
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Defining 4 constants
C3 ‘= tg()
- 22
9= —
t20
 tia — 2taap
¢l i=—"""
t20
_ taadd — t12¢0 + to2
Cy =
t20

we can further simplify 2 to:

P red?=cy [(gb — ¢0)* + (c20® + c10 + o) (A — >\0)2]
=5 [(¢ — ¢0)* + ((c20 + €1)p + co) (A — Ao)?]



Given a minimum (r) and maximum (R) search radius, we can filter
database entries using the following formula:

2

r? N , R
o < (¢ — o)+ ((c20 + 1)+ co) (A — Ao)” < —

C3

If latitudes and longitudes are not given as radians but as degrees, we
can use alternative coefficients:

- (Fg)o
(G

In order to get the latitude boundaries ¢, = ¢g £ A¢y, for a given center
point (¢o, Ag) and maximum search radius (R), we use the simplified equation
for d? and set &2 = R2, ¢ = ¢y, and A = Ag:

2 = cy [(gb — $0)” + (c20” + 10 + co) (A — /\0)2}

= R =c3(dp — d0)” + c3(c2dbp + 1 + o) (Ao — Ao)”
& R =c3(dn — do)?

R2
& (fb— Cbo)2 = 0_3

R2
& Agy = |y — ¢o| = on

3



The longitude boundaries A\, = \g = A\, are calculated by setting 2 =
R?* X\ =)\, and ¢ to a critical value ¢., which maximizes |\, — Aol:

42 = C3 [(Qf) — ¢0)> + (c29” + 10 + o) (A — )\0)2]
= R? =3 [(Pe — 00)? + (207 + 10 + o) (M — Ao)?]
2
& w—%f+@ﬁ+m»mm%—Mf=%
2
& @%+mwwm%—&f=%—wfww
B — (9 = d0)?
c2? + c19c + o

B _ (¢C - ¢0)2
S AN = |)\b - )\0| = \/0;153 +Cl¢c+co

p=— ()\b — )\0)2 =

¢, can be determined by setting A2 _ ), Using a computer algebra

software, we get two results, of which onlcy the following result leads to ¢. €
[—5;+7%] and real Ay:

B¢t + 20100 B + (3+2(co—c2)er) G

R2
62((2%_15_32) —Co + M 22<CO_C2E>CI (bO
+ c3 (f—;) + (2coco—c32) f—; + ¢t
be = 20200 + 1

The above formula only holds for cases where ¢y # 0 and the north or
south pole is not included within the search radius. If ¢y = 0, then ¢. = 0.
It is recommended to limit ¢. to an absolute value (@ymi;), which is the
maximum possible absolute value of ¢ in practice, e.g. 84° = 1—757r. When
Oc > Plimit, then ¢ymic should be used instead of ¢, to calculate A\,. When
Ge < —@limit, then —@mit should be used respectivly. When ¢. ¢ R, because
a pole is included within the search radius, then ¢y,,;; can be used for cases

where ¢y > 0, and — @i can be used for cases where ¢y < 0.



In addition to the outer boundaries ¢, = ¢y £ A¢gy, and A\, = Ao = AN,
for the maximum radius R, it is possible to define inner boundaries (¢;, A;)
for the minimum radius r. There are infinite possible solutions, we pick one
by chosing A; as follows:

AN = [\ — No| = e
| o \/2 (cagpt + c100 + <o)

Our choice of ); is optimal for ¢g = 0 and » — 0 (not proven here).

Having chosen A;, we can calculate ¢; by using the simplified equation for d?
and setting d?2 = r?, ¢ = ¢; and \ = \;:

@ = c3 [(¢ — ¢0)* + (c20” + €16 + co) (A — o)
2 =3 [(d1 — ¢0)? + (2t} + 165 + co) (N = Xo)?]

U
[

& ri=cy (6 — o)’ + (20 + 161+ co) (AN)?]
2
And 2—3 = (¢ — $0)” + (29} + 16 + co)(AN)?
2
& 2—3 = 67 — 26100 + 6% + ca(AN)20F + c1(AN) %1 + co(AN)?

S (AN 1) 67 + (e1(AN)? — 260) b + co(AN)? + 6 — — =0
3

, (3¢ — coca) (AN)*
g0 — ser(AN)? £ | H(eal — (2 + c1¢0 + o)) (AN)?
Lo
c3

CQ(A)\i)Q + 1

b0 — 3c1(AN)* * \/(iC% — coc2)(AN)* + 62§(A)‘i)2 + %g

< ¢Z CQ(A/\1)2 + 1

Note that the two solutions of ¢; are normally not symmetrical to ¢.



