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In this paper we shall provide a method to approximate distances between
two points on earth given by latitude and longitude. The motivation behind
this approximation is the efficient mass-calculation of distances between a
reference point and other nearby points in a huge database, while saving the
expenses of trigonometric calculations for each point in the database. The
approximation is done by approximating the squared distance with a 2nd
order Taylor-polynomial. Finally we will present a method to calculate lati-
tude and longitude boundaries for a given center point and radius, in order
to allow quick lookup of entries using a 2-dimensional database index.

We model the earth using a reference ellipsoid as defined by the formulas
below, where a is the semi-major and b is the semi-minor axis of a reference
ellipsoid (e.g. WGS-84) in meter.

X = Nφ cosφ cosλ

Y = Nφ cosφ sinλ

Z = Nφ (1− ǫ2) sinφ

ǫ =

√
a2 − b2

a

Nφ =
a

√

1− ǫ2 sin2 φ
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The distance d of two points (X, Y, Z) and (X0, Y0, Z0) in 3-dimensional
space is given by:

d2 = (X −X0)
2 + (Y − Y0)

2 + (Z − Z0)
2

= (Nφ cosφ cosλ−Nφ0
cosφ0 cosλ0)

2

+ (Nφ cosφ sinλ−Nφ0
cosφ0 sinλ0)

2

+ (Nφ (1− ǫ2) sinφ−Nφ0
(1− ǫ2) sinφ0)

2

Note that the path on the surface of the ellipsoid is distinct from d. For
our approximation of d2 with a 2nd order Taylor-polynomial this discrepancy
has no negative impact, as it does not affect any of its coefficients (not proven
here). The Taylor-polynomial d̃2 is given by:

d2 ≈ d̃2 =
2∑

i=0

2∑

j=0

( ∂
∂φ

i ∂
∂λ

j
d2) |φ=φ0,λ=λ0

i! j!
︸ ︷︷ ︸

=:tij

(φ− φ0)
i (λ− λ0)

j

Using a computer algrabra software, we can calcuate tij and get the fol-
lowing results:

t00 = 0

t10 = 0

t20 = a2
(1− ǫ2)

2

(
1− ǫ2 sin2 φ0

)3

t01 = 0

t11 = 0

t21 = 0

t02 = a2
1− sin2 φ0

1− ǫ2 sin2 φ0

t12 = −a2
(1− ǫ2) sinφ0 cosφ0
(
1− ǫ2 sin2 φ0

)2

t22 = −a2
(1− ǫ2)

(
1− sin2 φ0

) (
1
2
+ ǫ2 sin2 φ0

)

(
1− ǫ2 sin2 φ0

)3
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With t00 = t10 = t01 = t11 = t21 = 0 we can re-write d̃2 as:

d̃2 = t20(φ− φ0)
2 + (t22(φ− φ0)

2 + t12(φ− φ0) + t02)(λ− λ0)
2

= t20

[

(φ− φ0)
2 +

(
t22
t20

(φ− φ0)
2 +

t12
t20

(φ− φ0) +
t02
t20

)

(λ− λ0)
2

]

= t20

[

(φ− φ0)
2 +

(
t22
t20

φ2 − 2
t22
t20

φφ0 +
t22
t20

φ2
0 +

t12
t20

φ− t12
t20

φ0 +
t02
t20

)

(λ− λ0)
2

]

= t20

[

(φ− φ0)
2 +

(
t22
t20

φ2 + (
t12
t20

− 2
t22
t20

φ0)φ+
t22
t20

φ2
0 −

t12
t20

φ0 +
t02
t20

)

(λ− λ0)
2

]

= t20
︸︷︷︸

=:c3






(φ− φ0)

2 +







t22
t20
︸︷︷︸

=:c2

φ2 +
t12 − 2t22φ0

t20
︸ ︷︷ ︸

=:c1

φ+
t22φ

2
0 − t12φ0 + t02

t20
︸ ︷︷ ︸

=:c0







(λ− λ0)
2







Defining 4 constants

c3 := t20

c2 :=
t22
t20

c1 :=
t12 − 2t22φ0

t20

c0 :=
t22φ

2
0 − t12φ0 + t02

t20

we can further simplify d̃2 to:

d2 ≈ d̃2 = c3
[
(φ− φ0)

2 + (c2φ
2 + c1φ+ c0)(λ− λ0)

2
]

= c3
[
(φ− φ0)

2 + ((c2φ+ c1)φ+ c0)(λ− λ0)
2
]
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Given a minimum (r) and maximum (R) search radius, we can filter
database entries using the following formula:

r2

c3
≤ (φ− φ0)

2 + ((c2φ+ c1)φ+ c0)(λ− λ0)
2 <

R2

c3

If latitudes and longitudes are not given as radians but as degrees, we
can use alternative coefficients:

c′3 =
( π

180

)2

c3

c′2 =
( π

180

)2

c2

c′1 =
π

180
c1

c′0 = c0

In order to get the latitude boundaries φb = φ0 ±∆φb for a given center
point (φ0, λ0) and maximum search radius (R), we use the simplified equation
for d̃2 and set d̃2 = R2, φ = φb and λ = λ0:

d̃2 = c3
[
(φ− φ0)

2 + (c2φ
2 + c1φ+ c0)(λ− λ0)

2
]

⇒ R2 = c3(φb − φ0)
2 + c3(c2φ

2
b + c1φb + c0)(λ0 − λ0)

2

⇔ R2 = c3(φb − φ0)
2

⇔ (φb − φ0)
2 =

R2

c3

⇔ ∆φb = |φb − φ0| =
√

R2

c3
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The longitude boundaries λb = λ0 ±∆λb are calculated by setting d̃2 =
R2, λ = λb and φ to a critical value φc, which maximizes |λb − λ0|:

d̃2 = c3
[
(φ− φ0)

2 + (c2φ
2 + c1φ+ c0)(λ− λ0)

2
]

⇒ R2 = c3
[
(φc − φ0)

2 + (c2φ
2
c + c1φc + c0)(λb − λ0)

2
]

⇔ (φc − φ0)
2 + (c2φ

2
c + c1φc + c0)(λb − λ0)

2 =
R2

c3

⇔ (c2φ
2
c + c1φc + c0)(λb − λ0)

2 =
R2

c3
− (φc − φ0)

2

⇔ (λb − λ0)
2 =

R2

c3
− (φc − φ0)

2

c2φ2
c + c1φc + c0

⇔ ∆λb = |λb − λ0| =

√
R2

c3
− (φc − φ0)2

c2φ2
c + c1φc + c0

φc can be determined by setting ∂((λb−λ0)2)
∂φc

= 0. Using a computer algebra
software, we get two results, of which only the following result leads to φc ∈
[−π

2
; +π

2
] and real λb:

φc =

c2(φ
2
0−R2

c3
)− c0 +

√
√
√
√
√
√
√

c22 φ
4
0 + 2c1c2 φ

3
0 + (c21+2(c0−c2

R2

c3
)c2) φ

2
0

+ 2(c0−c2
R2

c3
)c1 φ0

+ c22

(
R2

c3

)2

+ (2c0c2−c21)
R2

c3
+ c20

2c2φ0 + c1

The above formula only holds for cases where φ0 6= 0 and the north or
south pole is not included within the search radius. If φ0 = 0, then φc = 0.
It is recommended to limit φc to an absolute value (φlimit), which is the
maximum possible absolute value of φ in practice, e.g. 84◦ = 7

15
π. When

φc > φlimit, then φlimit should be used instead of φc to calculate ∆λb. When
φc < −φlimit, then −φlimit should be used respectivly. When φc /∈ R, because
a pole is included within the search radius, then φlimit can be used for cases
where φ0 > 0, and −φlimit can be used for cases where φ0 < 0.
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In addition to the outer boundaries φb = φ0 ± ∆φb and λb = λ0 ± ∆λb

for the maximum radius R, it is possible to define inner boundaries (φi, λi)
for the minimum radius r. There are infinite possible solutions, we pick one
by chosing λi as follows:

∆λi = |λi − λ0| =

√
r2

c3

2 (c2φ2
0 + c1φ0 + c0)

Our choice of λi is optimal for φ0 = 0 and r → 0 (not proven here).
Having chosen λi, we can calculate φi by using the simplified equation for d̃2

and setting d̃2 = r2, φ = φi and λ = λi:

d̃2 = c3
[
(φ− φ0)

2 + (c2φ
2 + c1φ+ c0)(λ− λ0)

2
]

⇒ r2 = c3
[
(φi − φ0)

2 + (c2φ
2
i + c1φi + c0)(λi − λ0)

2
]

⇔ r2 = c3
[
(φi − φ0)

2 + (c2φ
2
i + c1φi + c0)(∆λi)

2
]

⇔ r2

c3
= (φi − φ0)

2 + (c2φ
2
i + c1φi + c0)(∆λi)

2

⇔ r2

c3
= φ2

i − 2φiφ0 + φ2
0 + c2(∆λi)

2φ2
i + c1(∆λi)

2φi + c0(∆λi)
2

⇔ (c2(∆λi)
2 + 1)φ2

i + (c1(∆λi)
2 − 2φ0)φi + c0(∆λi)

2 + φ2
0 −

r2

c3
= 0

⇔ φi =

φ0 − 1
2
c1(∆λi)

2 ±

√
√
√
√
√

(1
4
c21 − c0c2)(∆λi)

4

+(c2
r2

c3
− (c2φ

2
0 + c1φ0 + c0))(∆λi)

2

+ r2

c3

c2(∆λi)2 + 1

⇔ φi =
φ0 − 1

2
c1(∆λi)

2 ±
√

(1
4
c21 − c0c2)(∆λi)4 + c2

r2

c3
(∆λi)2 +

1
2
r2

c3

c2(∆λi)2 + 1

Note that the two solutions of φi are normally not symmetrical to φ0.
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